Image Registration Method BSpline 3
If you are not familiar with the SimpleITK registration framework we recommend that you read the registration overview before continuing with the example.
Overview
This example performs registration of multi-modality images with a multi-resolution BSpline approach.
A BSplineTransform usually has a large number of parameters which increases the complexity and duration of optimizing the deformation. The multi-resolution BSpline approach initially performs the registration at a lower resolution with fewer parameters at the first level and then adapts or resamples the BSpline control points to a higher resolution at subsequent levels. This transformation adaption is done concurrently with the ImageRegistrationMethod’s multi-level feature. This enables the setting of the shrink factor, smoothing sigmas, sampling percentage and BSpline resolution to vary per level to efficiently solve a diverse set of registration problems.
The initial transform is the low resolution BSpline. The scaling
factor of each BSpline used per level is specified with the
ImageRegistration::SetInitialBSpline
method’s third argument as an
integer array. The first value is usually 1 and it is reasonable to
double the resolution at each registration level. For this example the
last resolution is 5, so that the result is comparable to the
transformation from the previous example.
It can be important to monitor and observe the transform at each level or iteration. When the “inplace” option is enabled, the transform passed as the initial transform will be up to date during the registration process which enables it to be used in event commands.
See also: Image Registration Method BSpline 1, Image Registration Method BSpline 2.
Code
// This one header will include all SimpleITK filters and external
// objects.
#include <SimpleITK.h>
#include <iostream>
#include <stdlib.h>
#include <iomanip>
namespace sitk = itk::simple;
// use sitk's output operator for std::vector etc..
using sitk::operator<<;
class IterationUpdate : public sitk::Command
{
public:
IterationUpdate(const sitk::ImageRegistrationMethod & m, const sitk::BSplineTransform & tx)
: m_Method(m)
, m_BSplineTransform(tx)
{}
// Override method from parent which is called at for the requested event
void
Execute() override
{
if (m_Method.GetOptimizerIteration() == 0)
{
// The BSpline is resized before the first optimizer
// iteration is completed per level. Print the transform object
// to show the adapted BSpline transform.
std::cout << m_BSplineTransform.ToString() << std::endl;
}
// stash the stream state
std::ios state(NULL);
state.copyfmt(std::cout);
std::cout << std::fixed << std::setfill(' ') << std::setprecision(5);
std::cout << std::setw(3) << m_Method.GetOptimizerIteration();
std::cout << " = " << std::setw(10) << m_Method.GetMetricValue() << std::endl;
std::cout.copyfmt(state);
}
private:
const sitk::ImageRegistrationMethod & m_Method;
const sitk::BSplineTransform & m_BSplineTransform;
};
class MultiResolutionIterationUpdate : public sitk::Command
{
public:
MultiResolutionIterationUpdate(const sitk::ImageRegistrationMethod & m)
: m_Method(m)
{}
// Override method from parent which is called at for the requested event
void
Execute() override
{
// The sitkMultiResolutionIterationEvent occurs before the
// resolution of the transform. This event is used here to print
// the status of the optimizer from the previous registration level.
if (m_Method.GetCurrentLevel() > 0)
{
std::cout << "Optimizer stop condition: " << m_Method.GetOptimizerStopConditionDescription() << std::endl;
std::cout << " Iteration: " << m_Method.GetOptimizerIteration() << std::endl;
std::cout << " Metric value: " << m_Method.GetMetricValue() << std::endl;
}
std::cout << "--------- Resolution Changing ---------" << std::endl;
}
private:
const sitk::ImageRegistrationMethod & m_Method;
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Usage: " << argv[0] << " <fixedImageFilter> <movingImageFile> <outputTransformFile>" << std::endl;
return 1;
}
sitk::Image fixed = sitk::ReadImage(argv[1], sitk::sitkFloat32);
sitk::Image moving = sitk::ReadImage(argv[2], sitk::sitkFloat32);
std::vector<unsigned int> transformDomainMeshSize(fixed.GetDimension(), 2);
sitk::BSplineTransform tx = sitk::BSplineTransformInitializer(fixed, transformDomainMeshSize);
std::cout << "Initial Number of Parameters:" << tx.GetNumberOfParameters() << std::endl;
sitk::ImageRegistrationMethod R;
R.SetMetricAsJointHistogramMutualInformation();
const double learningRate = 5.0;
const unsigned int numberOfIterations = 100u;
const double convergenceMinimumValue = 1e-4;
const unsigned int convergenceWindowSize = 5;
R.SetOptimizerAsGradientDescentLineSearch(
learningRate, numberOfIterations, convergenceMinimumValue, convergenceWindowSize);
R.SetInterpolator(sitk::sitkLinear);
std::vector<unsigned int> scaleFactors = { 1, 2, 5 };
const bool inPlace = true;
R.SetInitialTransformAsBSpline(tx, inPlace, scaleFactors);
std::vector<unsigned int> shrinkFactors = { 4, 2, 1 };
R.SetShrinkFactorsPerLevel(shrinkFactors);
std::vector<double> smoothingSigmas = { 4.0, 2.0, 1.0 };
R.SetSmoothingSigmasPerLevel(smoothingSigmas);
IterationUpdate cmd1(R, tx);
R.AddCommand(sitk::sitkIterationEvent, cmd1);
MultiResolutionIterationUpdate cmd2(R);
R.AddCommand(sitk::sitkMultiResolutionIterationEvent, cmd2);
sitk::Transform outTx = R.Execute(fixed, moving);
std::cout << "-------" << std::endl;
std::cout << outTx.ToString() << std::endl;
std::cout << "Optimizer stop condition: " << R.GetOptimizerStopConditionDescription() << std::endl;
std::cout << " Iteration: " << R.GetOptimizerIteration() << std::endl;
std::cout << " Metric value: " << R.GetMetricValue() << std::endl;
sitk::WriteTransform(outTx, argv[3]);
return 0;
}
#!/usr/bin/env python
""" A SimpleITK example demonstrating image registration using the
BSplineTransform and the JointHistogramMutualInformation metric. """
import sys
import os
import SimpleITK as sitk
def command_iteration(method, bspline_transform):
""" Callback invoked each iteration """
if method.GetOptimizerIteration() == 0:
# The BSpline is resized before the first optimizer
# iteration is completed per level. Print the transform object
# to show the adapted BSpline transform.
print(bspline_transform)
print(f"{method.GetOptimizerIteration():3} " + f"= {method.GetMetricValue():10.5f}")
def command_multi_iteration(method):
""" Callback invoked before starting a multi-resolution level.
The sitkMultiResolutionIterationEvent occurs before the
resolution of the transform. This event is used here to print
the status of the optimizer from the previous registration level.
"""
if method.GetCurrentLevel() > 0:
print(
"Optimizer stop condition: " + f"{R.GetOptimizerStopConditionDescription()}"
)
print(f" Iteration: {R.GetOptimizerIteration()}")
print(f" Metric value: {R.GetMetricValue()}")
print("--------- Resolution Changing ---------")
if len(sys.argv) < 4:
print(
"Usage:",
sys.argv[0],
"<fixedImageFilter> <movingImageFile>",
"<outputTransformFile>",
)
sys.exit(1)
fixed = sitk.ReadImage(sys.argv[1], sitk.sitkFloat32)
moving = sitk.ReadImage(sys.argv[2], sitk.sitkFloat32)
transformDomainMeshSize = [2] * fixed.GetDimension()
tx = sitk.BSplineTransformInitializer(fixed, transformDomainMeshSize)
print(f"Initial Number of Parameters: {tx.GetNumberOfParameters()}")
R = sitk.ImageRegistrationMethod()
R.SetMetricAsJointHistogramMutualInformation()
R.SetOptimizerAsGradientDescentLineSearch(
5.0, 100, convergenceMinimumValue=1e-4, convergenceWindowSize=5
)
R.SetInterpolator(sitk.sitkLinear)
R.SetInitialTransformAsBSpline(tx, inPlace=True, scaleFactors=[1, 2, 5])
R.SetShrinkFactorsPerLevel([4, 2, 1])
R.SetSmoothingSigmasPerLevel([4, 2, 1])
R.AddCommand(sitk.sitkIterationEvent, lambda: command_iteration(R, tx))
R.AddCommand(sitk.sitkMultiResolutionIterationEvent, lambda: command_multi_iteration(R))
outTx = R.Execute(fixed, moving)
print("-------")
print(tx)
print(outTx)
print(f"Optimizer stop condition: {R.GetOptimizerStopConditionDescription()}")
print(f" Iteration: {R.GetOptimizerIteration()}")
print(f" Metric value: {R.GetMetricValue()}")
sitk.WriteTransform(outTx, sys.argv[3])
if "SITK_NOSHOW" not in os.environ:
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(fixed)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(100)
resampler.SetTransform(outTx)
out = resampler.Execute(moving)
simg1 = sitk.Cast(sitk.RescaleIntensity(fixed), sitk.sitkUInt8)
simg2 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8)
cimg = sitk.Compose(simg1, simg2, simg1 // 2.0 + simg2 // 2.0)
sitk.Show(cimg, "Image Registration Composition")